

Chemistry of natural waters I

ENV-200 Week 8

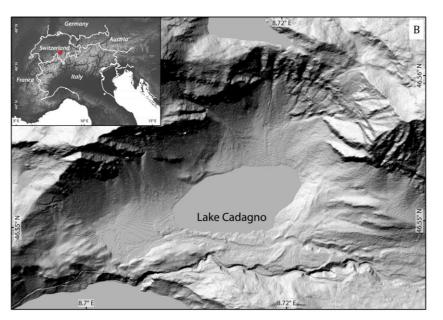
Meret Aeppli meret.aeppli@epfl.ch

Learning objectives

Meret Aepp

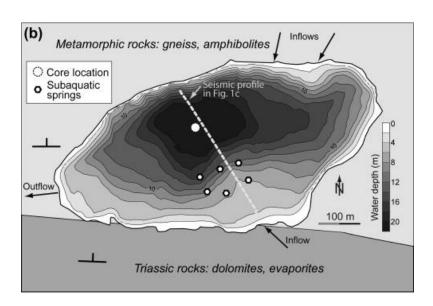
You should be able to use the concepts we covered in the past few weeks to interpret the **chemistry of a real lake**. Based on observations of the chemical conditions, you should be able to conclude which **reactions** and **processes** are occurring in the lake.

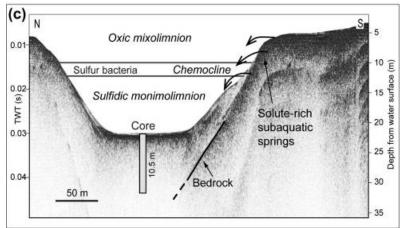
Lake Cadagno

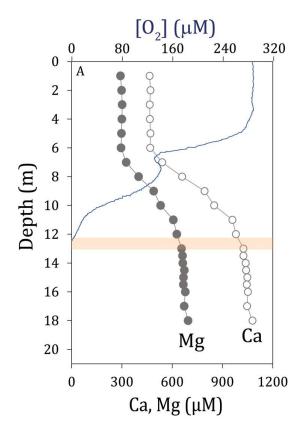

vieret Aepp

Lake Cadagno is located at 1921 m elevation. It is a 21 m deep crenogenic meromictic alpine lake with a permanent chemocline near 13 m depth.

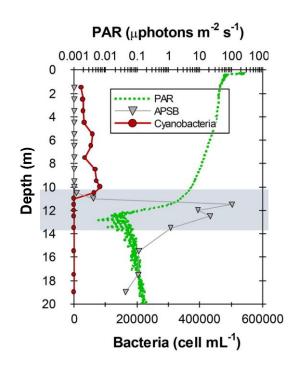
- A meromictic lake is a lake which has layers of water that do not intermix.
- The chemocline is the border at which water layers with different chemistries meet.




Janssen, DJ et al., AGU Geophys Res Let, **2022**, 49, e2022GL099154.



Lake Cadagno



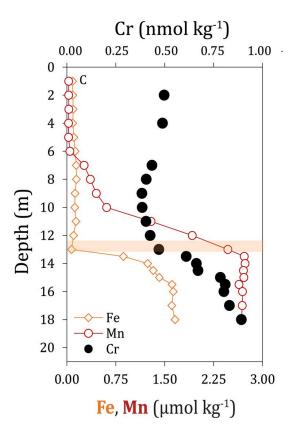
- The catchment basin is characterized by sulfate containing rocks.
- Weathering processes transport significant amounts of sulfate into Lake Cadagno.
- Underwater springs feed substantial amounts of leached sulfate into the hypolimnion of lake Cadagno (crenogenic meromixis). This sulfate-rich, heavier water rests at the bottom of the lake and prevents mixing during spring and fall.

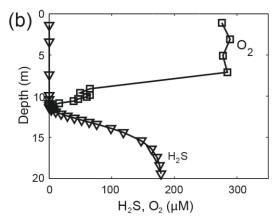
The chemocline separates the upper, oxygenated layer (above 13 m depth) and the lower, anoxic layer (below 13 m depth).

- a. Why do bottom waters become anoxic?
- b. What differences in water chemistry do you expect for these two layers?

Why do bottom waters become anoxic?

- High primary production in the surface layer (cyanobacteria)
- Formed organic matter sinks downward and is degraded in the chemocline and below
- Step-wise consumption of electron acceptors


PAR = photosynthetically active radiation APSB = anaerobic phototrophic sulfur bacteria


Water column

O ₂ present	02	absent
Oxic conditions	Weak anoxia	Strong anoxia
pε >> 0	pε ~ 0	pε << 0
Oxidized solutes and solids:	Reduced s	solutes
N NO_3^-	$NO_2^ NH_4^+$	-
S SO ₄ ²⁻	S ⁰	H ₂ S
C CO _{2(aq)}		CH ₄
Fe Fe ^{III} ; e.g., FeOOH _(s)	Fe ²⁺	
Mn Mn ^{IV} ; e.g.,	Mn ²⁺	
MnO(OH) _{2(s)}		

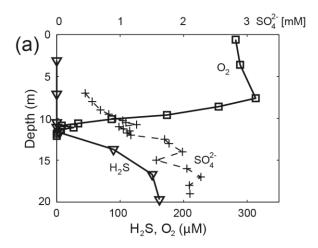
What variations in water chemistry do you expect for these two layers?

- Oxic layer: oxidized solutes and solids
- Anoxic layer: elevated concentrations of reduced Mn, Fe, H₂S

Do concentration profiles follow the expected redox sequence?

Sulfur cycling at the chemocline

Sulfate (SO₄²⁻) from gypsum is delivered horizontally by subaquatic springs


 Dissimilatory sulfate reduction: Form of anaerobic respiration that uses sulfate as the terminal electron acceptor to produce hydrogen sulfide

$$C_2H_3O_2^- + SO_4^{2-} + 3H^+ \rightarrow 2CO_2 + H_2S + 2H_2O$$

Anoxygenic photosynthesis: H₂O oxidation to sulfur or sulfate by phototrophic sulfur bacteria

$$HCO_3^- + 2H_2S + hv \rightarrow CH_2O + 2S^0 + H_2O + OH^-$$

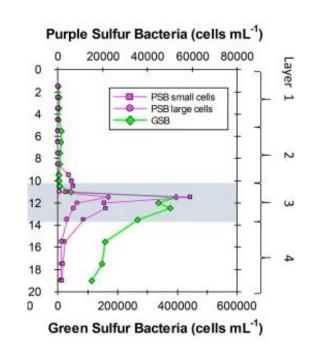
 $2HCO_3^- + H_2S + hv \rightarrow 2CH_2O + SO_4^{2-}$

 The sulfidocline shows diurnal fluctuations between 11 and 13 m

Purple and green sulfur bacteria cultures. Kushkevych, I. et al., Front. microbiol, **2024**, 15

ENV 200: Metal Speciation

Iron cycling at the chemocline


As iron(II) diffuses upward within the chemocline, it is oxidized to iron(III) and precipitates as iron(III) hydroxides

 Biotic Fe(II) oxidation: fixation of inorganic carbon to form organic matter by iron-oxidising anoxygenic phototrophs (termed photoferrotrophs)

$$HCO_3^- + 4Fe^{2+} + 10H_2O + hv = CH_2O + 4Fe(OH)_3 + 7H^+$$

Green and purple sulfur bacteria

 Abiotic iron(II) oxidation: reaction with dissolved oxygen or particulate manganese

$$2Fe^{2+} + O_2 + 4H_2O = 2Fe(OH)_3 + 2H^+$$

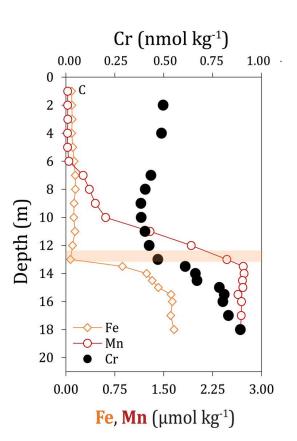
 $2Fe^{2+} + MnO_2 + 4H_2O = 2Fe(OH)_3 + Mn^{2+} + 2H^+$

The formed iron(III) hydroxides sink through the chemocline and are immediately reduced.

 Biotic iron reduction: dissimilatory iron(III) reduction and dissolution reactions

$$C_2H_3O_2^- + 8Fe^{3+} + 4H_2O = 2HCO_3^- + 2Fe^{2+} + 2H^+$$

 $HCOO^- + 2Fe^{3+} + H_2O = HCO_3^- + 2Fe^{2+} + 2H^+$
Heterotrophic iron-reducing bacteria

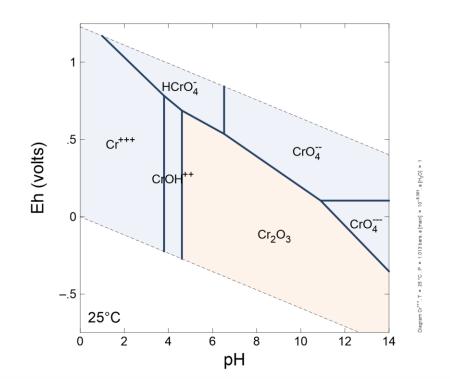

Iron cycling at the chemocline

Rapid oxidation and reduction of iron results in "cryptic" cycling: iron oxides are not detected because they are immediately reduced

Primary production (cyanobacteria) produces O₂ to oxidize Fe2+ Biotic iron oxidation (photoferrotrophs) MnO. Mn²⁺ Microbial Mn FeS_{aa} oxidation produces MnO, to oxidize Fe2+ H₂S Fe²⁺ Corganic Dissimilatory iron reduction (heterotrophic iron reducers)

ENV 200: Chemistry of Natural Waters

Water column


We can explain the Fe and Mn trends with the redox profile. But what about Cr?

Cr likely comes into the lake through surface water input resulting from oxidative terrestrial weathering.

Which processes could result in these trends in concentration?

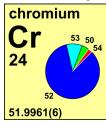
Biogeochemistry of chromium (Cr)

- Chromium (Cr) is a redoxsensitive metal element with two natural oxidation states
 - Cr(VI)
 - Soluble
 - Commonly as oxyanions
 - Very toxic
 - Cr(III)
 - Insoluble
 - Cr (III)-compounds
 - Less toxic

The Cr isotope system

Chromium has four stable isotopes with different abundances:

• 50Cr

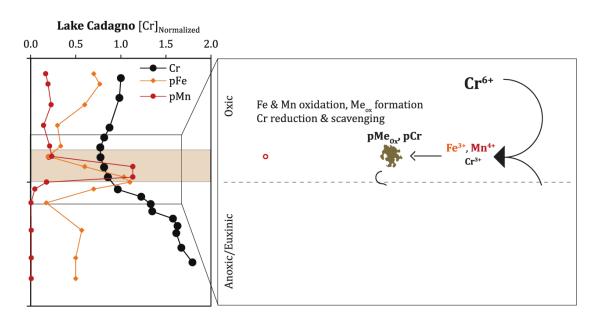

4.35 %

• ⁵²Cr 83.79 %

• 53Cr 9.50 %

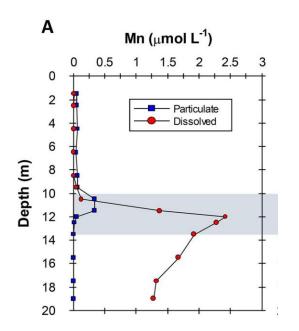
• 54Cr

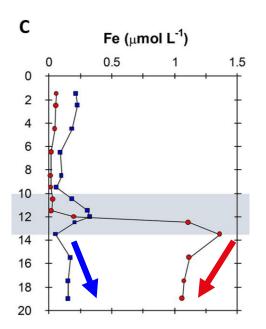
2.36 %


- Isotope ratios offer a third dimension:
 - Concentration => How much?
 - Speciation => In which form?
 - Isotope ratios => What's the history? (Sources, processes)
- Cr isotope fractionation occurs during Cr redox reactions as well as other redox-independent processes

Cr isotopes as a paleo proxy

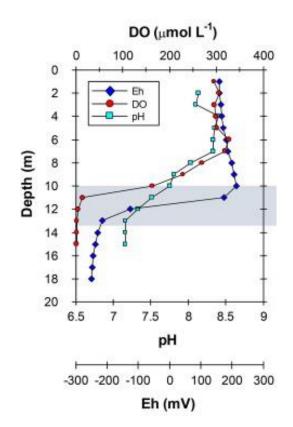
- Chromium (Cr) isotopes are increasingly used as a paleoproxy to understand changes in Earth's redox conditions, oxygenation history, and biogeochemical cycles over geologic time.
- Paleo-reconstructions using sedimentary δ⁵³Cr records apply the assumption that Cr is efficiently sequestered into sediment phases under reducing conditions
- Complete Cr redox conversion prevents isotopic fractionation, resulting in sediment-hosted authigenic δ⁵³Cr equivalent to the overlying water column
- Lake Cadagno acts as an "ocean analog" to study the processes affecting the δ^{53} Cr signature in the water column


Redox processes at the chemocline



- Fe and Mn oxides form within and above the chemocline, driven by upward transport of dissolved Fe(II)
- Fe(II) reduces Cr from Cr⁶⁺ to Cr³⁺
- Cr³⁺ is scavenged onto metal oxides
- Sinking particles transport Cr³⁺ downreductive dissolution of iron oxides results in release of Cr

Particulate and dissolved concentrations



Iron(III) compounds are reductively dissolved in the anoxic zone. Why do we see an increase in particulate iron and decrease in dissolved iron below the chemocline?

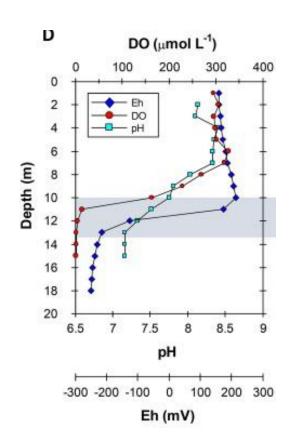
Iron redox processes

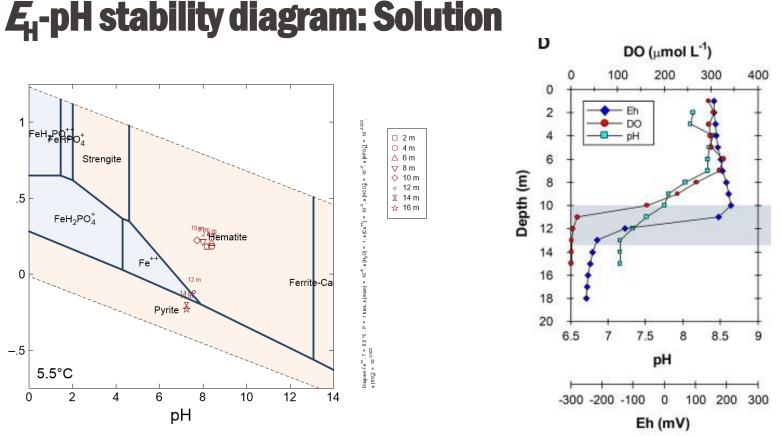
eret Aeppl

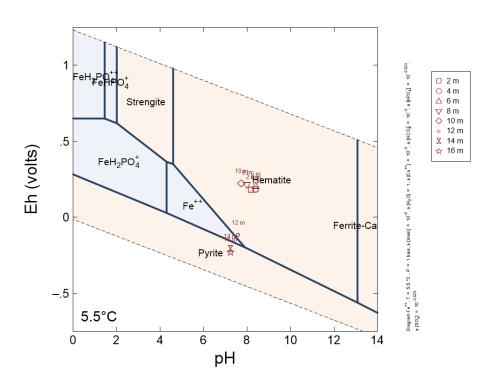
- The decrease in dissolved and increase in particulate Fe concentrations suggest that iron phases are precipitating.
- Which method could you use to figure out which phases are precipitating?

E_{H} -pH stability diagram to the rescue!

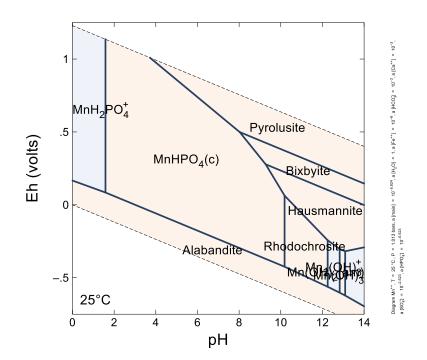
- Temperature: 5.5 °C
- Pressure: 1 bar
- Total iron concentration: 1 µmol/L
- Bicarbonate: 1 mmol/L
- Calcium: 1 mmol/L
- Sulfate: 3 mmol/L
- Phosphate: 3 µmol/L

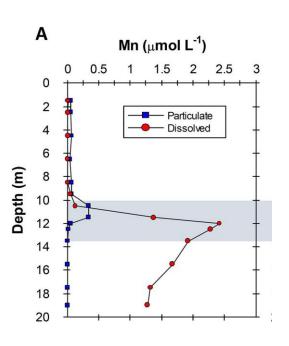

=> We will learn how to use modeling tools to create Eh-pH diagrams next week


ENV 200: Chemistry of Natural Waters


E_H-pH stability diagram

рΗ





FeS is expected to precitipate in the anoxic zone and likely causes the increase in particulate concentrations we observed.

$E_{\rm H}$ -pH stability diagram: Solution

Why is there no increase in particulate Mn?

Summary

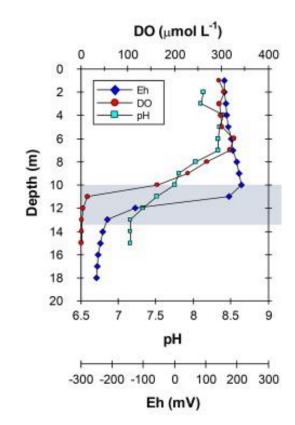
- 1. Lake Cadagno has a permanent chemocline that separates oxic surface from anoxic bottom waters. This setting allowed us to discuss many of the processes covered in class in a natural setting: dissolution and precipitation processes, metal speciation, microbially mediated and abiotic redox processes.
- 2. We further realized how geochemical modeling can be useful to make sense of some of the water column data for Lake Cadagno reported in the literature.

Chemistry of natural waters II

ENV-200 Week 8

Meret Aeppli meret.aeppli@epfl.ch

E_H-pH stability diagram: Solution


\circ
Ω
a
⋖
+
Ð
a

Basis	Command	Results	5	Plot		
diagram spe	cies —					
		Fe++	₽			1.0e-06 ▼ activity ▼
on axes						
		H+	₽			on x axis
				рН ▼	from	0.0
		e-	₽	O2(aq)		on y axis
				Eh ▼	from	-0.75 ▼ to 1.25 ▼ increment 0.5 ▼
in the preser	nce of					
		H2O				1.0 ▼ activity ▼ solvent
		Ca++	₽			0.001 activity •
		НСО3-	₽			0.001 activity •
		HPO4	₽			3.0e-06 ▼ activity ▼
		SO4	₽			0.003 • activity •
	te	mperature				5.5 ▼ C ▼
		pressure				1.0 ▼ bars ▼
add	delete					

E_H-pH stability diagram: Solution

егет Аерр

- Now add the data from the figure on the right into your E_H-pH diagram.
- To do so, create a GSS file, add the data, and then drag and drop it into your E_H-pH diagram.

